Dimensional Hausdorff properties of singular continuous spectra.

نویسندگان

  • Jitomirskaya
  • Last
چکیده

We present an extension of the Gilbert-Pearson theory of subordinacy, which relates dimensional Hausdorff spectral properties of one-dimensional Schrödinger operators to the behavior of solutions of the corresponding Schrödinger equation. We use this theory to analyze these properties for several examples having the singular-continuous spectrum, including sparse barrier potentials, the almost Mathieu operator and the Fibonacci Hamiltonian.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Zero-dimensional singular continuous spectrum for smooth differential equations on the torus

We study spectral properties of the flow ẋ = 1/F (x, y), ẏ = 1/λF(x, y) on the 2-torus. We show that, in general, the speed of approximation in cyclic approximation gives an upper bound on the Hausdorff dimension of the supports of spectral measures. We use this to prove that for generic pairs (F, λ) the spectrum of the flow on the torus is singular continuous with all spectral measures support...

متن کامل

Continuity properties of the stress tensor in the 3-dimensional Ramberg/Osgood model

We discuss the weak form of the Ramberg/Osgood equations for nonlinear elastic materials on a 3-dimensional domain and show that the stress tensor is Hölder continuous on an open subset whose complement is of Lebesgue-measure zero. We also give an estimate for the Hausdorff-dimension of the singular set.

متن کامل

Limit-periodic Schrödinger Operators in the Regime of Positive Lyapunov Exponents

We investigate the spectral properties of the discrete one-dimensional Schrödinger operators whose potentials are generated by continuous sampling along the orbits of a minimal translation of a Cantor group. We show that for given Cantor group and minimal translation, there is a dense set of continuous sampling functions such that the spectrum of the associated operators has zero Hausdorff dime...

متن کامل

Spectral Measures with Arbitrary Hausdorff Dimensions

In this paper, we consider spectral properties of Riesz product measures supported on homogeneous Cantor sets and we show the existence of spectral measures with arbitrary Hausdorff dimensions, including non-atomic zero-dimensional spectral measures and one-dimensional singular spectral measures.

متن کامل

Operators with Singular Continuous Spectrum, VII. Examples with Borderline Time Decay

2 Abstract: We construct one-dimensional potentials V(x) so that if H = — JJT -fV(x) on L(IR), then H has purely singular spectrum; but for a dense set D, φ e D implies that \(φ,e~φ)\ ^ Q, | f |~ 1 / 2 ln( | f | ) for |ί| > 2. This implies the spectral measures have Hausdorff dimension one and also, following an idea of MalozemovMolchanov, provides counterexamples to the direct extension of the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review letters

دوره 76 11  شماره 

صفحات  -

تاریخ انتشار 1996